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SUMMARY 

The transient heave response of a freely floating cylinder with given initial conditions is obtained by a simul- 
taneous time-domain solution of the fluid-motion and rigid-body dynamics problems. Volterra's method is 
used to derive the integral equation associated with the fluid motion. It is shown that the unit initial-velocity 
response is simply the time-derivative of the unit initial-displacement response multiphed by one half of the 
infinite-fluid virtual mass of the cylinder. Numerical evaluation of integrals related to the unsteady water- 
wave Green function is facilitated by expressing them in terms of the complex error function. Results for the 
transient motion of semi-circular, triangular, and rectangular cylinders are presented and discussed. Experi- 
mental measurements for the case of a semi-immersed circular cylinder agree exeeUently with the theoretical 
calculations. 

1. Introduction 

The hydrodynamics  of  bodies oscillating steadily in a free surface is characterized by  frequency- 

dependent force coefficients. In the time domain, such dependence is equivalent to the presence 

of  memory effects. The problem of  determining the transient response of  a freely floating 

body has the additional interesting feature that the instantaneous force is coupled with the 

unknown body motion.  

Interests in the solution o f  such unsteady problems arose in the mid-60s, during which 

experimentalists investigated the possibility of  determining the frequency spectrum of  the force 

coefficients by  using the results o f  single transient-response experiments.  The theoretical  basis 

for such an approach was first outl ined by  Cummins [5] ,  who introduced a step-response 

function,  based on which the t ime-dependent force and moment  on a body can be evaluated. 

Kot ik  and Lurye [12] considered the generalization of  such an approach to include forward- 

speed effects. The actual computat ion of  the unit-step response function was nontrivial and not 

considered in either work. Wehausen [17] provided a broader formulat ion and derived the 

associated integral equation for the initial-vahie problem of floating bodies without  forward 

speed. Following a treatment by Finkelstein [7] for initial.vahie water-wave problems, he 

showed formally how Cummins'  decomposit ion was related to the more general formu- 

lation. In the same work, Wehausen also derived the so-called Haskind relations which expressed 
the exciting forces in terms o f  the radiation potentials.  

The transient mot ion of  a freely floating body was first examined in a consistent manner by  
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UrseU [16], who considered the problem by superposing wave harmonics. By examining the 
analytical behavior of the force coefficients in the frequency domain, in particular, near the 
origin of the complex-frequency plane, Ursell obtained a large-time asymptotic behavior of the 
response for a semisubmerged circular cylinder. Maskell and Ursell [14] later also computed the 
entire response for the initial-displacement and initial-velocity problem of this cylinder by using 
known analytical results of the force coefficient in the frequency domain. Ohmatsu [15] 
attempted an integral equation formulation based on a source distribution of the unsteady 
Green function which satisfies the linearized free-surface condition and encountered difficulties 
caused by eigen frequencies of the interior problem. Adachi and Ohmatsu [2] later explained 
that the origin of the difficulty is related to the formulation of their integral equation. Daoud 
[6] considered a closely related problem with an application to study the flow near the bow of 
a ship in mind. Chapman [4] proposed a novel treatment of such unsteady free-surface problems 
by representing the fluid motion in terms of a discrete set of wave harmonics. A careful choice 
of wave-number and frequency distribution must be exercized in order to represent a com- 

pletely nonreflective exterior fluid domain. 
The present work treats the freely floating cylinder problem with a more traditional 

approach, i.e. via the use of an unsteady Green function that satisfies the linearized free-surface 
condition. In Section 2, we provide a formulation of the problem based on energy consideration. 
The integral equation for the velocity potential is derived in Section 3 by using Green's theorem. 
Particular attention is given to the physical interpretation of various initial-disturbance terms. 
For a cylinder whose motion starts from rest, we show in Section 4 that the solutions of the 
initial-displacement and initial-velocity (impulsive-starting) problems are related in a manner 
very similar to that of a simple harmonic oscillator. Section 5 describes the numerics associated 
with the solution of this fluid-body interaction problem. Numerical treatment of the unsteady 
Green function is detailed. Results for the case of  circular, triangular, and rectangular cylinders 
are presented and discussed in Section 6; those for the latter two geometries are heretofore 
not available in the literature. Also presented are some previously unpublished experimental 

measurements due to Ito [10] for the case of a semicircular section. 

2 Problem formulation 

We consider a cylinder of an arbitrary shape floating on the free surface of an ideal fluid. 

Let Oxy be the coordinate system defined in Figure 1, ~ be the half-breadth of the cylinder, 
the fluid density, and ~ the acceleration of gravity. We shall adopt the convention that all 
quantities are assumed to be nondimensional unless they are overbarred. The characteristic 

length, mass, and time used for nondimensionalization will be chosen as ~, ~ff~, and (~/~-)-1/2 
respectively. 

We assume that at time t = 0 the cylinder is given either an initial position y(0)  with the 
initial velocity being zero (Problem 1) or an initial velocityjp(O) with the initial position being 
zero (Problem 2). The objective is to determine the subsequent vertical motion y(t) of the 
cylinder. In the context of irrotational flow, it is not .difficult to show that the linearized 
problem for the (nondimensional) velocity potential ~(x,  y,  z, t) is defined by 
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V 2 ~ ( x , y ,  t) = 0 for ( x , y )  in_~, (1) 

a-n = j~( t )n , ,  (2) 

• t t (x ,  0, t) + ~y = 0, (3) 

w h e r e ~ i s  the equilibrium position of the body and n is an outward normal to the fluid. The 
linearized free-surface elevation Y(x ,  t) and hydrodynamic pressurep(x, y, t) are related to • by: 

Y(x ,  t) = -- d~t(x, O, t), (4) 

p(x ,  y ,  t) = --  cbt(x, y ,  t). (5) 

The hydrodynamics problem (1-3)  is coupled with the rigid-body dynamics via the boundary 
condition (2), since ~ itself is unknown and affected by the fluid motion. 

g 

Figure 1. Coordinate system. 

Let E ( t )  be the total energy of the system consisting of the cylinder and the fluid at any 
time. I rE  b and E t denote the energy of the body and the fluid respectively, then 

o r  

E( t )  = E b + E t = E(O) (6) 

/~b = - -  E t  (7 )  

by virtue of the conservative nature of this system. At any given instant, the energy of the body 
is given by 

m . 
Eb( t  ) = y2  + _ ~ y 2 ,  (8) 
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where the first term is potential energy associated with the hydrostatic restoring force and the 
second the kinetic energy of the body. 

The kinetic and potential energy associated with the fluid is given by 

Er(t ) = ½ ff~lV~12dxdy + ~ f~_Y:(x, t)dx, (9) 

where ~ - i s  the part of  the x-axis outside of the cylinder. Thus, 

= ¢bt ~n ds + (¢~tc~y 4- dPtdPtt)dx 

= f ~tnydsj,, 

(10) 

where ds represents the differential arc-length element along ~ ' .  In arriving at the second equality 
of  (10), Gauss' theorem has been used. The third equality is a consequence of (3) and (2). 

Differentiating (8) and using (7), we obtain 

( m ) ) + 2 y +  f ¢btnyds)j~ = 0. (11) 

The quantity in parenthesis could have been derived in a more customary manner using Newton's 
second law by noting that the force on the body F(t) is the negative of the third term of (11). 
The present derivation, however, shows more concisely how energy could be transferred back 

and forth between the body and the fluid. 
The complete hydrodynamics problem is therefore the solution of ( 1 -3 )  subject to the 

additional differential equation (11). 

3. Integral equation for 

An integral equation for • can be derived using Volterra's method. To accomplish this, it is 
necessary to introduce an unsteady Green function G of the form: 

G(P, Q, t - r) = log r + H(P, Q, t - r), (12) 

where r is the distance between the field point P = (x, y) and the source point Q = (~, ~7) and 7- 
is a dummy time variable representing the instant G is brought into existence. The function H 
is to be harmonic in .& and to be so constructed that 

Grr(P;~,O;t--r)+G n = 0, 

= 0; 0) = 0. 

(13a) 

(13b) 
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If  we apply Green's second identity to Dr(P, 7") and G, and integrate the resulting expression 
from r = 0 to r = t, then for P ~ ~ ' ,  

27r [¢(P,  t) -- ~ (P ,  0)] = Sotd~r ~ds(Q)tc~(Q)Gv(P, Q;t-T)-*v~G] 
(14) 

where a/av = n • o / a ~ ,  a/at/). By (3), (4), and (13), the bracketed quantity evaluated at r / =  0 
can be written as 

[cbrGn -- OrnG] n=o 
a a 

= - - ~  [ ~ , G r + d P n G ] n = o  = ~ [YGr--YrG], 

which vanishes when evaluated at the upper limit, r = t, because of  (13b). To avoid solving an 
integro-differential equation, we integrate the body terms by parts once. Hence, 

-- f#,..[Y(,~, O)Gr(P;/L O; t) -- YrG ] d~ 

t a ¢, 

(15) 

An expression related to (15) without the integration-by-parts on ~5¢ was first given by 
Finkelstein [7]. We shall now explain the physical nature of  the various inhomogeneous terms 
in ( I  5). Let 

~[a,] = 27re~(P, t)-- f~cb(Q,t)Gv(P,Q,O)ds 

+ f: dr f~cb(Q,r)Ur~(P,Q,t-r)ds. (16) 

The potential at time t can be decomposed into a sum of three separate effects as follow: 

- ~ [ q ~ n ] - - - -  f~r~bv(Q,t)G(P,Q,O)+ f'odr ff~bv(Q,r)Hr(P,Q,t-'r)ds, (17a) 
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- ~ [~ F , ]  = -- J~,_Y(~, o) c r ( P ; } , o ; t ) d ~ ,  (17b) 

c.~[~F2 ] = ~ YrG(P; ~, O; t) d/j + 2nob(P, O) 

a 

= -- f~_~(Q, 0) Grr(P;  }, 0; t) d~. (17c) 

The component ~B is evidently the fluid motion generated by the body boundary condition 
for t ~> 0 +, assuming no previous disturbances existed in the fluid. Equation (17a)is valid even 
for motion that starts impulsively. ~F,  describes the fluid motion in the presence of the body 
due to an initial free surface elevation and its subsequent evolution. ~F2 describes the corre- 
sponding fluid motion due to an initial velocity on the free surface. The simplification on the 
right-hand side of (17c) is obtained by using Green's theorem and recognizing that ~(P,  0) 
corresponds to a potential field induced by Yr(x, O) on y = 0. Thus, the combination o f ~ F ,  
and ff~F2 represents essentially the diffraction potential due to the body during the evolution of 
a Cauchy-Poisson wave system (cf. Lamb [13] ). These points were apparently not clearly stated 
in the literature. 

For the problem at hand, we assume that the fluid was initially at rest. Thus it is only 
necessary to solve for ~n,  whose subscript will be omitted hereafter. An integral equation for 
¢b on ~5~ can be readily obtained by letting P approach 5/¢. The net effect is that the factor 27r 
in (16) is now replaced by ~r (see e.g., Kellogg [11 ] ). If we define 

.~[qb] = 7rdp(P,t)-- f~cd)(Q,t)Gv(P, Q,O)ds + ftdr f ¢b(Q,r)Hrv(P,Q,t-r)ds, 
(18) 

then the integral equation for • on ~ is 

.~[qs] = - - ~ ( t )  f nrG(P,Q,O)ds+ ftoj~(T)dr f~nyHr(P,Q,t--r)ds. (19) 

Equation (19) must be solved for all t in conjunction with the dynamics equation (11). 
The unsteady Green function is available from Finkelstein [7]. If we introduce the complex 

variables z = x + iy and ~" = ~ + it/, with i = x/-Z], we can write 

(• dk (i - -  cos~v/-kt)e -ikCz-~)] G(P,Q,t) = Re log (z -- ~') -- log (z -- ~) -- 2 jo k (20) 

where the overhead bar denotes complex conjugate and Re stands for the real part of the 
expression. From (20), it is evident that 
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G(P,Q,O) = log(r/r1), rx = x / (x _ ~)2  + ( y + ~ ) 2  (21) 

which represents the flow about the cylinder and its image above the free surface in an infinite 
fluid. This is compatible with tile first condition in (13b). The 'memory' kernel H~ is thus given 

by the expression: 

(**dk sinx/~ (t-- r)e -iktz-~)] Hr(P,Q,t-7") = Re 2 20 ~ (21) 

Before discussing the numerical solution of (19), we will show that the solutions of Problems 1 
and 2 defined in Section 2 are related to each other in a manner not very different from the 

case of a simple harmonic oscillator. 

4. Relation between initial-displacement and initial-velocity problems 

In order to show that the solutions of the initial-displacement problem and initial£velocity 
problems are related, we first observe the following property of the Volterra operator-~: 

_0 _~[ep] = _~ [¢t] + ~dsep(Q, O+)Hw(t-- 0+), (22) 
3t 

which can be readily verified by Leibnitz's rule. From (19) we also observe that at t = 0 ÷ 

.~  [alp(p, 0+)] = =3)(0 +) f~r nyG(P, Q, O) ds. (23) 

We note that the second term of  (22) vanishes if the initial velocity vanishes. Since G(P, Q, O) 
defined by (21) represents the infinite-fluid Green function, it is evident from (23) that the 
nondimensional force F(t) in (11) at t = 0 ÷ is given simply by 

F(0 +) = - u . ) ( 0 + ) ,  (24) 

whe re /~  is the infinite-fluid nondimensional added-mass coefficient of the submerged portion 
of the body. 

Let Yx (t) be the solution to the unit initial-displacement problem and dp 1 (P, t) be the 
associated velocity potential, i.e. 

my1 + 2yl = -- f~5~cbltnyds, (25) 
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-~[~1]  = --.~l(t) f nyG(P, Q,O)ds + foty~(r)dr f~cnyHz(P, Q , t - r ) d s ,  (26) 

with the initial conditions being 

yx(0 +) = 1, )51(0 +) = 0. (27) 

If equations (25) and (26) are differentiated once with respect to time, then 

mJ~ + 2h = -- (. ny(~tds, (28) 

.~[~] = - -h( t ) f  n,G(P,Q,O)ds+h(O + ) f ~ r n , H r ( t - 0 + ) d s  

+ f t  h ( r ) d r f n r H r ( t _ r ) d s  ' (29) 

where we have defined h = .v l ,  ~b = ~i t  and made use of (22) on the left-hand side of (29). 
Now since h(0 ÷) vanishes because of (27), we conclude immediately that h(t) and q~(P, t) 
satisfy the same equations as Yl, but with the initial conditions 

h(0 ÷) = 0, (30) 

/~(0 +) = -- 2/(m + I~),  (31) 

where (31) is the result of (25) evaluated at t = 0 +. If y2 is used to denote the solution to the 
unit initial-velocity problem, then evidently 

y2(t) = --½ (m + U**)yl(t), (32) 

which is the relation being sought. The above proof encompasses the special case of a circular 
cylinder considered by Ursell [16] who noted that Y2 (t) = --~ 7r J)l (t) by solving the problem 
in the frequency domain. Because the mathematical structure of the problem in three dimen- 
sions is identical to that of the present, equation (32) is valid for any three-dimensional body 
also. Thus, the solution for any freely floating body with initial displacement y (0  +) and initial 
velocity j~(0 +) can be written as: 

y(t) = y(O+)yl(t) -- ½ (m +/~.))3(0+)Pl(t). (33) 

Interestingly, in spite of the complexities of the fluid interaction, (33) is identical to the 
case of a simple damped harmonic oscillator with the mass replaced simply by the infinite-fluid 
virtual mass of the section. We note here that the factor ~ in (33) is associated with the inverse 
of the spring constant. 
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The numerical solution of the integral equation (19) is sought in conjunction with the dynamics 
equation (1 1) at discrete instances of  time tk, k = 0, 1, 2 , . . . ,  with to = 0 +. To facilitate the 
evaluation of the boundary integrals, we employ a polygonal representation of  ~ by defining 
a set o f  grid points (~j, r/i),/' = 1, 2 . . . . .  N + 1, which are joined successively by straight-line 

segments designated here as ~ , / =  1 ,2  . . . . .  N. 
Let ~ k )  be the 'spatial-average' of  the potential on S~i at tk, and y(k) and ~(k) be the 

position and the velocity of  the body at the same t. Using the notations introduced, we can 
now write (19) as 

N 
7r(i)~) _ (i)~t~)a~ i +33(k) Z nj/3// = --iAt"', i = 1, . . . ,N,  (34) 

j = l  j = l  

where all memory  terms have been transposed to the right-hand side and nj is the value o f n y  on 
Y j .  

The coefficients aij, [3ij are integrals associated with the terms Gv(P, Q, 0) and G(P, Q, O) 
along ~ respectively. Their treatment is well known (see, e.g. Frank [8] ). By definition, the 
memory  integral A~ ~), as observed at the i-th control point, Pi, where (19) is satisfied, is given 
by the expression 

tk { ~[¢b a -33(r)ny(Q)]Hr(P~,Q, tk -r)ds(Q)} (35) A?, : -  dT ,_2 

In spite of the fact that both  • and 33 may be relatively slow-varying functions of  time, Hr  
could oscillate very rapidly, particularly when Pi is close to the free surface and t~ -- r is large. 
As an example, we plot in Figure 2 the curly bracketed quantity of  (35), designated here as 

A(k)(tk -- r), for the case of  prescribed motion: 33(0 = sin cot, with co = 0.5. For simplicity, 
the geometry is taken as a semicircle, and N and i are both  chosen to be 8. The integrand is 
shown here for ten successive instances of  time during the second cycle of  oscillation, i.e. 

T~< t k ~< 2T, with T being the period. The integral A~ k), which must be evaluated with care, 
is cross plotted on the right side of  the figure, with the vertical axis representing tk/T. The 
contribution associated with /3ij is also shown. Generally speaking, the term associated with 
the infinite-frequency kernel is more important than A~ ~) when Pi is near the bo t tom of  the 
cylinder, and the opposite is true when Pi is near the free surface. This is congruent to the fact 
that the bo t tom of  the cylinder experiences less wave-motion than the sides. 

I f  the time stepping is chosen so that  • and 33 do not change rapidly within a given time step, 
it is possible to integrate out the oscillatory part o f H  r as follows: 

k N 

A} ~) - ~ ~, tr~m)'~Lm)-.~'~m)njX}~)lj -,s , (36) 
m = l  j = l  
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Figure 2. Memory effects due to free-surface at increasing values of t k. 

where 

,(m) 
ij 

x~ m~ 

f 
[Hrv(Pi, Q, tk - r) 

ftra dr f dS(Q) (37) 

A convenient choice of the 'time-averaged' ~b~ m) and i f (m)is  simply [ o ) r a - , ) +  qb}ra)]/2 and 
[.~(m-1) + .~(m)] /2  respectively. This approximation implies an implicit dependence of A~ k) 
on the unknown values of  O~k) and )3 (k) at tk ; a dependence which, strictly speaking, is absent 
in (35),  since Hr(Pi, Q, 0) = 0. In practice, it was found that the effects due to these implicit 
terms are negligible. Nevertheless, we now formally have 



N N 

i " ij t t i  , , . , j r j p ( 4 )  Z ni([JiJ ij , 
. /=1 J = l  

k - I  N 

= -  [ '~ j  7 o  "" 
m = l  j = l  

N 
1 ~. (4-1) .(4) _.',(k-~)n.a(k)~: *"~i , . . . .  for i = 1,2, ,N, 
2 j = 1 ( ¢ j  7., 
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(38) 

where all known quantities are transposed to the right-hand side. As to be expected, the major 
computation efforts is in the evaluation 7ij and Xij. We shall return to that shortly. For the 
dynamics equation (11), we can rewrite it as two coupled first-order differential equations 
(involving y and ) ) :  

dy = jp, dj, _ ( _  2y + F(t))/rn. (39) 
dt dt 

If a Runge-Kutta third-order algorithm is now applied to (39), we can arrive at the following 
formulas for advancing the solution: 

y (4 )  = A y ( 4 - 1 )  + B j A 4 - ~ )  Jr 
A t  2 

[F(t4-1 ) + 2F( t4 - , / 2 ) ] ,  (40) 
6m 

j2 (k) Jr ~(k ) /m -- A~ (k-1) -- 2 9  y ( k - 1  ) _ Ata 
m 3m 2 F(t4-1 ) + ~ ( k -  l ) /m, (41) 

where 

A = 1 -- A t  2 /m,  B = At(1 -- At 2/3m), (42) 

N 
~(k) = ~ ~b~k)njdsj. (43) 

j = l  

In the equations above, At is taken as t k -- tk_ 1 which need not be constant. Quantities 
involving F in (40) and (41) are essentially linear combinations of ~ at two or three time steps 
when a Lagrange interpolation formula is introduced. Equations (38), (40) and (41) provide 
N + 2 linear equations for the N unknown q~k),jAk) and y(k). These are solved simultaneously. 
By letting At ~ 0, we observe that the strongest coupling among these equations is between 
(38) and (41), where the change in velocity is related directly to the change in ~.  

To calculate the integrals of (37), we first exploit the following relations for the integration 
of any analytic function ~ in the complex plane: 

f (f)a,(~-) = [ - i  f (~-)]_~J÷', (44) 
• ~ - j  
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f (~)ds(~) - _--Z, f (~') , (45) 

where ~-is an antiderivative of f . Equations (44) and (45) can be easily derived by using the 
Cauchy-Riemann relations. If we now introduce the following indefinite integrals: 

J ( z - - ~ , t )  = 2i ftodt (=dk-  Jo Vr~ sin x/k t  e -~(z -~) ,  (46) 

I ( z - -~ ,  t) = -- 2i f t  dt f o  dk ~ -  sin x/kt  (1 -- e -ik(z-~)), (47) 

then, by (44) and (45), 7(0 m) and kiln) can be written in terms of J and I as: 

.(.,,) = Re [J(z -- ~j+,, t) -- J(z -- gj, t)] tk-tra (48) 
i1 tk - tm - 1 

[ ~J+'--~J [ I ( z - - -~÷ t ) - - I ( z - - ~ , t ) ] t k - t m  } .  
X}~) = Re[i~'i+l--~'jI " t k - tm- I  

(49) 

The integrals I and J as defined by (46) and (47) are related to the Error function of a single 
argument. To see this, first we note that the inner integral of  J is a standard integral available 
from Bateman [3]" 

4.f? ] V ~  sinV~te-lk(z-~) = --t i e -n2 erf(--i~2) 

4~2 t 
= Y ( n ) ,  n = (50) 

t 2%/i(z-- ~) ' 

where erf is the error function defined in Abramowitz and Stegun [1 ] and oa'-is the so-called 
Dawson integral. We note also that the half plane Im(z- -~)~< 0 is now mapped onto 
I Arg (~)1 ~< lr/4, with the real axis of  (z -- ~) being the -+ 45 o rays of  the ~2 plane. The function 
erf oscillates with increasing frequency and amplitudes along arg (-- i ~ )  = n/4, as 1FZ[ ~ oo. 
This behavior, which is reasonably well known in the literature, is primarily responsible for the 
aforementioned difficulty of integrating A(k)(t) numerically. The time integral of J can be 
expressed in terms of ~2 by noting that dt/t = d~2/~2. Hence, 

J(z --~-, t) = J ( ~ )  = 4i ~ 1 ( ~ ) ,  (51) 
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¢ *  ~2 
~ ( a )  -- 2 Jo 3r-(a)d~2" (52) 

If the I integral is integrated with respect to t, followed next by an integration by parts with 

respect to k, we obtain 

I = t f Z - d u  ( **dk  e - ' k U s i n x / ~ t - - i ( z - - ~ ) J .  (53) 
d O  Jo x/k 

Using (50) and the fact that du = it2d~2/2~23 , we can reduce (53) to 

I ( z  -- ~, t) = 4(z -- -0 [ 2~2 ~ ( ~ 2 )  + ~ ( ~ 2 ) ] ,  

where 

(54) 

(~) = f® ~-(~) d~ j~ ~2 • 

Thus, the calculation of I and J implies the evaluation of the functions ~r-, ~ " 1  , and ~-2. All 
of these functions have the property J - ( ~ )  = ~'-(~2). In actual computations, it is not necess- 
ary to evaluate all three quantities simultaneously. In studying some related integrals, Daoud 
[6] showed that 

J'22(~) = ~ { ( ~ )  + ~'-(I2) _ log~  --½ (3' + log4), (55) 

where 7 is Euler's constant. This relation is particularly useful. For small ~2, it is straightforward 
to calculate ,~(~2) and ~ (~),  since both have relatively simple series expansion. For large ~2, 
an efficient means of evaluating ~ - ( ~ )  is described by Gautschi [9], and a large-~ expression 
for ~ may be derived based on the expression given therein. Thus, Ja'-2 or ~ follows 
simply from (55) by using the other two quantities that have been already calculated. 

Figures 3a, b and 3c, d illustrate how the functions I and J behave within the 45 ° wedge of 
~ .  The perspective plots as shown represent the intersection of the surface defined by the real 
(or imaginary) part of the functions with vertical planes representing the rays of the ~2 plane 
and with cylindrical surfaces representing the modulus of £Z. As can be seen, these functions, 
representing the spatial and time integrals of the original function Hr and Hrv, are much less 
oscillatory and better behaved. As to be expected, the most oscillatory disturbance is still 
associated with arg (~)  = + 7r/4, corresponding physically to Im(z -- ~) = O. 

Finally, we note that while the coefficients a~i and /3~j are not time dependent, the 
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computation efforts of A} k) increases with k like an arithmetic progression. Thus, the calcu- 
lating of A }k), i = 1, . . . N requires N 2 k evaluations of  the quantities 70 and kij; and the total 
amount of computation effort required to obtain the solution of k steps would be proportional 
to N2k 2 . However, one extremely useful recurrent property has not yet been pointed out. We 

note from (37) that 7~ m) and ~ m )  are more properly designated as 7 ~  'm) and ~ , m ) ,  
respectively, because of their implicit dependence on tk. It is easy to deduce that 

(k m) ^ ( k - l , r a - l )  ),(k, rn) = ~.}?-l,rn-1) 
o '  = l o  , . - i j  , m >i 2 .  

This effectively reduces the computations by a factor of k. In the actual implementation, 
the symmetry of the body shape about x = 0 was further taken advantage of. 

6. Results and discussion 

The method of solution described in Section 5 has been applied to obtain the transient response 
of several types of cylinders. The computer program developed was checked by obtaining 
the asymptotic forces at large time for prescribed sinusoidal motions of the body and com- 
paring such forces with those based on the frequency-domain solution (see Yeung [18]). 
Another cross check was made by solving both Yl (t) and y2(t) separately and verifying that 
they were related by (32). 

Figure 4a shows the response of a circular cylinder with unit initial displacement. Figure 
4b shows the manner at which energy is transmitted between the body and the fluid. The 
corresponding result for the problem with initial velocity is shown in Figures 5a and b. The 
present results of  the displacement are in good agreement with those of Maskell and Ursell 
[14]. It is worthwhile to note that E(0 ÷) for the initial-velocity problem is twice that of the 
initial-displacement problem because of the presence of kinetic energy in the fluid. Such 
energy is proportional to the infinite-fluid added mass which happens to be identical to the 
displaced (body) mass. In these figures, the energy transfer rate is seen to oscillate twice as 
fast as the response, since it is the product of the force and velocity. The maxima on the 
body-energy curve occur precisely when the body achieves a maximum or minimum position, 
while the minima correspond to the instances of time that the fluid force acting on the body 
vanishes. 

An experimental assessment of  the theoretical solution was carried out by Ito [10] in 
1977. Figure 6 is a sketch of the apparatus that was set up across a water tank for recording 
the transient heave response of a circular tube 6 inches in diameter. The analog signal recorded 
was digitized and plotted in Figure 7 together with the theoretical results. The theoretical 
curve slightly over predicts the amplitude of the first and second minimum. Aside from that, 
the agreement between theory and experiment is excellent. 

Theoretical calculations were carried out also for two additional types of shapes: triangular 
and rectangular sections. Figures 8 and 9 display the response of a 60 o and 90 °-angle wedge, 
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Figure 4. Transient motion and energy transfer rate of a semicircular section due to a unit initial displace- 
ment. 

respectively. It is o f  interest to note that  the 60 o wedge, which has a larger effective mass, 

oscillates with a longer period than the 90 o case. The 90 o wedge is however a more effective 

wave maker by virtue o f  the fact that body  points are on the average closer to the free surface. 
Its mot ion  damps out  very quickly. 

Figure 10 shows the initial-displacement response of  three rectangular sections with differ- 

ent drafts. The damping characteristics are consistent with what has been pointed out  earlier. 

Aside from that ,  we observe that  the first period o f  oscillation can be well approximated by 
one based simply on the infinite-fluid virtual mass o f  the section. 
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Figure 5. Transient motion and energy transfer rate of a semicircular section due to a unit initial velocity. 

Even though the time between successive zero crossings o f  a typical  response curve shown 

here is not  constant ,  which is an intrinsic proper ty  o f  such transient problems, it is of  con- 

siderable practical interest to point  out  that  the period between successive maxima or alternate 

zeros are generally not  drastically different from the damped 'natural per iod '  o f  a simple 

harmonic oscillator of  constant coefficients described by  the following differential equation: 

[m + U(Wd)] )7 + X ((")d)Y q- 2y = 0, (56) 

where Wa is the solution o f  the transcendental equation: 
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Figure 7. Comparison of experimental and theoretical response for a semicircular section. 
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Figure 10. Initial-displacement response of rectangular sections of 3 different drafts (2"= = 2rr[(m + 
U®)/2] ,,2 ). 

(57) 

with/a and k being the known time-harmonic nondimensional added mass and damping. If the 
initial-displacement solution of (56) is designated by y~', Figure 11 shows thatyl* compares well 

with Y x for a number of lightly damped shapes. The approximating curves tend to underpredict 
the first minimum and overpredict the following maximum. Damping coefficients estimated 
based on the logarithmic decrement of the e x a c t  transient solution were found to fluctuate 
about 10% to 20% around the time-harmonic value X (~a) .  If y* is accepted as a useful approxi- 
mation, (32) can be used to calculate the initial-velocity response. 

The techniques described in this paper can be extended in a relatively straightforward 

manner to study responses of other modes of motion, with or without the presence of incident 
w a v e s .  
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